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Abstract—Deep matrix factorizations (deep MFs) are recent
extensions of standard MFs to several layers. This allows one
to extract hierarchical interleaved features in high-dimensional
datasets. In this paper, we present a variant of deep MF
where the input matrix is symmetric and nonnegative, dubbed
deep symmetric nonnnegative matrix factorization (DSNMF). We
compare several loss functions to tackle DSNMF and propose
different possible initialization techniques. We apply successfully
DSNMF to the extraction of several levels of communities, both
on synthetic data and on a psychiatric network, a promising
application in the medical field.

I. INTRODUCTION

Matrix factorizations (MFs) is a set of well-known unsu-
pervised learning techniques where a data matrix X ∈ Rm×n

is approximated by the product of two smaller matrices,
W ∈ Rm×r and H ∈ Rr×n, such that X ≈ WH . To
make the approximation meaningful, various constraints may
be assumed on W and H including non-negativity [1] and
sparsity [2]. Among these variants, symmetric non-negative
matrix factorizations (symNMF) [3], [4] require the data
matrix X to be non-negative and symmetric, that is, X = XT

with m = n, and H = WT . This occurs when the entries of X
measure the similarities between different items, for example
a word co-occurrence matrix in topic modeling [5], or an adja-
cency matrix of an undirected graph. In this context, symNMF
extracts communities of nodes, possibly overlapping, such that
the nodes of a given community have more connections (that
is, edges) with each other than with nodes belonging to other
communities.

Recently, MFs started to scale up by considering several lay-
ers in the decomposition, following the path of deep learning.
Especially, two milestone frameworks were successively intro-
duced in the literature, namely multilayer MFs [6] and deep
MFs [7]. More precisely, L layers of successive factorizations
of ranks rl (l = 1, ..., L) are performed on X as follows:

X ≈ W1H1,

W1 ≈ W2H2,

. . .

WL−1 ≈ WLHL,

where Wl ∈ Rm×rl and Hl ∈ R+
rl×rl−1 (l = 1, . . . , L)

with r0 = n, so that the matrix X is approximated as
X ≈ WLHLHL−1 · · ·H1. In deep MF, the ranks are assumed
to be decreasing, that is, r1 > r2 > · · · > rL; see [8], [9] for
details.

Both multilayer MFs and deep MFs decompose the input
matrix through several layers, but they differ on the way

the factors are optimized. These "in-depth" factorizations
were leveraged in several applications, such as hyperspectral
unmixing [10], recommender systems [11] and multi-view
clustering [12], and allow one to extract hierarchical features
in datasets.

To the best of our knowledge, combining symmetry and
depth within MFs has not yet been explored in the literature.
In this paper, we explore such a MF, namely deep symmetric
non-negative matrix factorizations (DSNMF).

Organization of the paper: In Section II, we describe
DSNMF, along with the intuition behind it, and provide an
illustration on a simple example. In Section III, we present the
loss function for DSNMF and an efficient algorithm to solve it.
We also discuss the initialization of DSNMF. Experiments on
both synthetic and real data are then performed in Section IV,
before concluding in Section V.

II. PROPOSED DSNMF MODEL

The goal of DSNMF is to leverage L levels of factorizations
to give at each layer l a non-negative symmetric approxim-
ation of rank rl of the original matrix X ∈ Rn×n. More
precisely, at the first layer, X is approximated by W1W

T
1

where W1 ∈ Rn×r1
+ , as in symNMF (see the introduction).

Let X be the symmetric adjacency matrix of a graph. In this
case, each column of W1 can be interpreted as a community,
with W1(i, k) being the indicator of node i to belong to
community k. In fact, X ≈

∑r1
k=1 W1(:, k)W1(:, k)

T means
that X is approximated as the sum of r1 communities which
are rank-one nonnegative adjacency matrices. At the second
layer, the matrix W1 is factorized as W1 ≈ W2H2 with
W2 ∈ Rn×r2

+ and H2 ∈ Rr2×r1
+ , and r2 < r1. This gives a

new symmetric approximation of rank r2 < r1 of X , namely
X ≈ W2(H2H

T
2 )W

T
2 . At the second layer, each column of

W2 indicates to which extent the n data points belong to one of
the r2 communities. The square inner matrix H2H

T
2 ∈ Rr2×r2

indicates how strongly the r2 communities interact with each
other. In fact, the second layer of DSNMF is a particu-
lar case of symmetric non-negative tri-factorization, namely
X ≈ WSWT where S = H2H

T
2 [13]. As the factorization

unfolds, the rl’s columns of the matrices Wl’s will identify
fewer communities (as the ranks of the factorization are
decreasing) and the inner square matrix Hl · · ·H2H

T
2 · · ·HT

l

indicates how the numerous small communities of the first
layers are progressively merged in fewer larger communities
of the last layers. Hence, DSNMF provides a deeper level of
understanding of the input data matrix than its single-layer
version, similarly to the other deep MF models [8].



Fig. 1: Simple graph to illustrate the working of DSNMF, with
two levels of communities.

Let us illustrate DSNMF with L = 2 on the synthetic graph
of Fig. 1, made of 14 nodes. DSNMF applied with r1 = 4
and r2 = 2 splits the nodes in four communities at the first
layer, namely containing the nodes {1, 2, 3, 4}, {4, 5, 6, 7},
{8, 9, 10, 11}, and {11, 12, 13, 14}. They correspond to the
sets of nodes surrounded with a solid line circle. Note that
nodes 4 and 11 belong with the same proportion to two
communities. Then, at the second layer, only two communities
remain (dashed circles), obtained by merging respectively the
first two and the last two communities of the first layer.

III. ALGORITHM FOR DSNMF

Given a non-negative symmetric matrix X ∈ Rn×n
+ , stand-

ard symNMF consists in solving the following optimization
problem:

min
W∈Rn×r

+

∥X −WWT ∥2F .

To avoid dealing with a fourth-order objective function in W ,
an alternative formulation is proposed in [4]:

min
W∈Rn×r

+

H∈Rr×n
+

∥X −WH∥2F + µ∥W −HT ∥2F . (1)

For µ sufficiently large, it has been shown that W = HT holds
for the critical points of (1) [14]. Extending (1) to L layers
requires to define an appropriate loss function. Inspired by [15]
that showed that weighted sums of layer-wise contributions
are meaningful loss functions for deep MFs, we propose to
minimize

LDSNMF =
1

2

(
∥X −W1H1∥2F + µ1∥W1 −HT

1 ∥2F + λ1

(∥W1 −W2H2∥2F + µ2∥W2 − (H2H1)
T ∥2F ) + · · ·+ λL−1

(∥WL−1 −WLHL∥2F + µL∥WL − (HLHL−1 · · ·H1)
T ∥2F )

)
.

(2)

This layer-centric loss function performs a weighted
sum of the layer-wise symNMF errors, that is,
err(l) = λl−1(∥Wl−1−WlHl∥2F +µl∥Wl− (Hl · · ·H1)

T ∥2F )
for l = 1, · · · , L, with W0 = X and λ0 = 1. Each layer-wise
error is in turn the sum of two contributions. The first one,
namely err1(l) = ∥Wl−1 − WlHl∥2F , is the reconstruction
error at layer l, that is, the error between Wl−1 and its
approximation WlHl of rank rl. The second term, namely
err2(l) = µl∥Wl − (Hl · · ·H1)

T ∥2F for all l, ensures the
symmetry of the factorization, using the same trick as in
Eq. (1) to solve non-quadratic optimization subproblems.
With such a global loss function, it is possible to derive
meaningful update rules for all the factors Wl’s and Hl’s,
which are optimized alternatively, that lead to a monotonic
decrease of the objective function.

To minimize LDSNMF defined in Eq. (2), we use a block
coordinate descent (BCD) method, with the blocks of vari-
ables Wl’s and Hl’s. This general framework is presented in
Algorithm 1. The subproblems in one factor matrix at lines 4
and 5 are solved with a fast projected gradient method (FPGM)
with Nesterov acceleration [16], similarly to what is described
in [15].

Algorithm 1 DSNMF

Input: Symmetric matrix X .
Output: Matrices W1, . . . ,WL and H1, . . . ,HL

1: Choose the number of layers L, the inner ranks r1, ..., rL,
and the initial matrices W

(0)
l and H

(0)
l for all l.

2: for k = 1, . . . do
3: for l = 1, . . . , L do
4: H

(k)
l = arg reduce

H∈Hl

LDSNMF

5: W
(k)
l = arg reduce

W∈Wl

LDSNMF

6: end for
7: end for

A crucial aspect of deep MF models is the choice of the
hyperparameters, namely the number of layers, L, and their
factorization ranks, rl’s. In the following, we suggest two ways
of initializing DSNMF:

• When the depth L and the ranks rl’s are given by the user,
the initial factors W (0)

l ’s and H
(0)
l ’s are initialized with a

sequential multilayer approach, as in [17]. More precisely,
L non-negative symmetric factorizations are performed
layer by layer to initialize the factors, before moving to
DSNMF in itself. This is the strategy that we chose for
experiments on synthetic data since it provides control on
the network architecture.

• When no prior information on the network is provided,
we resort to the well-known Louvain Method (LM) [18].
LM is a widely-used algorithm that extracts communities
of nodes in a graph by maximizing the so-called network
modularity. LM starts with each node representing its
own community and then tries to move nodes from one
community to another. After each iteration t, LM provides
a split of the graph in rt disjoint communities, that is,



with each node belonging to a single community. In
other words, LM extracts a bottom-up hierarchy of com-
munities inside a graph, allowing a different interpretation
at each iteration, similarly to what multilayer MF does
(except that in multilayer MF, nodes can simultaneously
belong to several communities, with some proportions).
Hence, in the absence of values provided by the user, we
set the number of layers L of DSNMF to be equal to the
number of iterations of LM and the ranks rl’s are taken as
the number rt’s of communities successively extracted by
LM. The initial matrices are built for all l such that each
column of W

(0)
l corresponds to a community extracted

by LM at iteration l and for any (i, j), H(0)
l (i, j) = 1 if

node j is assigned to community i at iteration l and 0
otherwise.

IV. EXPERIMENTS

In this section, we apply DSNMF on synthetic data in
Section IV-B, and on a real psychiatric network in Sec-
tion IV-C. DSNMF can be interpreted as a hierarchical unsu-
pervised fuzzy clustering approach hence no clear ground-truth
is available. More precisely, the features extracted at each
factorization layer are unknown, which renders the quantitative
assessment of the model challenging, even on synthetic data.

A. Compared methods

In the following experiments, we compare three algorithms,
namely:

• DSNMF, see Algorithm 1 in Section II. To set up
the parameters λl’s for l = 1, ..., L − 1 and µl’s for
l = 1, ..., L, we balance the importance of each layer
and proceed as follows. The λl’s are chosen such that
the initial values err(0)(l)’s are the same for all l > 1,
that is, λl =

err(0)(1)
err(0)(l+1)

. Similarly, the µl’s are such that

for all l, err(0)1 (l) = err
(0)
2 (l), that is µl =

err
(0)
1 (l)

err
(0)
2 (l)

.
• Multilayer symmetric NMF (MSNMF); this is the sym-

metric version of the sequential multilayer factorization
of Cichocki et al. [6]. In other words, the symmetric
factorizations are successively performed independently
layer by layer.

• Fuzzy k-means (FKM) [19] applied at each layer: this is a
variant of the well-known k-means clustering algorithm,
where each data point may be assigned to more than one
cluster, with various degrees of membership.

All experiments were run in MATLAB, the code is available
from https://gitlab.com/ngillis/deep-SymNMF/.

B. Synthetic dataset

We build our dataset in a similar way as the toy example
of Fig. 1. More precisely, we set L = 2, r1 = 4 and r2 = 2.
The noiseless graph consists in two disjoint sub-graphs of the
same size, themselves composed of two cliques of the same
size that have n∗ nodes in common, which is the same for
both subgraphs. For n = 14 and n∗ = 1, this is exactly the
situation represented on Fig. 1 if the edge between nodes 4

(n, n∗,ϵ) DSNMF MSNMF FKM

(14, 1, 0.01) 0.10± 0.01 0.11± 0.02 0.72± 0.02

(14, 1, 0.05) 0.56± 0.06 0.57± 0.07 0.96± 0.10

(14, 1, 0.1) 1.07± 0.17 1.08± 0.19 1.40± 0.24

(14, 1, 0.5) 5.97± 0.75 5.62± 0.70 6.36± 0.76

(100, 10, 0.01) 0.05± 0.00 0.05± 0.00 1.13± 0.00

(100, 10, 0.05) 0.27± 0.01 0.23± 0.01 1.15± 0.02

(100, 10, 0.1) 0.55± 0.03 0.47± 0.02 1.24± 0.04

(100, 10, 0.5) 3.75± 0.14 2.50± 0.12 2.98± 0.10

(100, 30, 0.01) 0.07± 0.00 0.06± 0.00 9.32± 4.78

(100, 30, 0.05) 0.35± 0.01 0.31± 0.01 9.31± 4.85

(100, 30, 0.1) 0.74± 0.04 0.64± 0.04 10.78± 6.71

(100, 30, 0.5) 6.36± 0.19 3.42± 0.12 23.23± 0.02

(a) MRSA at the first layer.

(n, n∗,ϵ) DSNMF MSNMF FKM

(14, 1, 0.01) 2.37± 7.64 4.98± 6.12 0.20± 0.06

(14, 1, 0.05) 4.29± 8.08 7.55± 6.84 0.84± 0.23

(14, 1, 0.1) 3.46± 6.60 18.77± 13.29 1.92± 0.54

(14, 1, 0.5) 19.99± 14.07 27.56± 12.92 14.59± 7.43

(100, 10, 0.01) 0.05± 0.00 7.85± 4.98 0.05± 0.00

(100, 10, 0.05) 0.28± 0.04 2.37± 0.93 0.25± 0.01

(100, 10, 0.1) 0.59± 0.10 1.44± 1.14 0.50± 0.04

(100, 10, 0.5) 3.62± 0.78 26.09± 9.09 2.63± 0.20

(100, 30, 0.01) 0.04± 0.00 20.19± 2.63 0.04± 0.00

(100, 30, 0.05) 0.19± 0.01 20.73± 2.51 0.20± 0.01

(100, 30, 0.1) 0.39± 0.03 21.31± 2.17 0.40± 0.03

(100, 30, 0.5) 2.08± 0.16 21.35± 2.10 2.10± 0.11

(b) MRSA at the second layer.

Table I: Comparison of the MRSA (average and standard de-
viation) of DSNMF, MSNMF and FKM on synthetic data over
25 runs in function of the noise level ϵ and the configuration
of the network for Ia r1 = 4 and Ib r2 = 2. The best average
MRSA achieved for each configuration is highlighted in bold.

and 11 is removed. We add symmetric white Gaussian noise
of standard deviation ϵ to the noiseless adjacency matrix X̃
such that the noisy data matrix is given by

X = max

(
0, X̃ + ϵ||X̃||F

N

||N ||F

)
,

where N is a symmetric square matrix whose elements are
drawn from the standard normal distribution.

For different noise levels ϵ and for several combinations of
n and n∗, we run the three methods described in Section IV-A
with 25 different randomly generated noise matrices N as
described above. Table I reports the average and standard de-
viation of the mean removed spectral angle (MRSA) between
the columns of the groundtruth and of the computed factors
Wℓ’s (which were permuted to minimize the MRSA), over
these 25 runs. The MRSA between two vectors x and y is
given by MRSA(x, y) = 100

π arcos
(

⟨x−x,y−y⟩
∥x−x∥2∥y−y∥2

)
∈ [0, 100]

where ⟨ · , · ⟩ indicates the scalar product of two vectors and
· is the mean of a vector.

The interpretation of the results is not easy since no
method outperforms the others. At the first layer, DSNMF and

https://gitlab.com/ngillis/deep-SymNMF/


MSNMF perform comparably, and clearly outperform FKM,
especially when the clusters are more overlapping. It was
expected that MSNMF performs well on the first layer since
it optimizes the first layer independently of the next ones. It is
reassuring to see that DSNMF performs comparably: although
it has to take into account the decomposition at the second
layer, the error at the first layer is similar to that of MSNMF,
a single-layer decomposition.

At the second layer, MSNMF completely fails, showing the
limitations of a purely sequential multilayer approach. This
was already observed in previous works [15] (this becomes
worse when the number of layers increases). Fuzzy k-means
performs better than DSNMF except in the case where many
nodes lie at the intersection of several communities. It is also
important to keep in mind that FKM always works on the
original data without the need to keep a balance between
several layers, such as DSNMF. Since it is by definition a
single-layer method, FKM is not able to interpret the links
beetween successive levels of communities, as opposed to
DSNMF, which is crucial in real-world applications.

In summary, DSNMF is the most consistent method, on
average, and is the only one able to balance both layers for
the various tested configurations.

C. Psychiatric networks

Network analysis has been recently applied successfully in
computational psychiatry. The original data matrix Y ∈ Rm×n

contains the ratings of m subjects on n symptoms on an
ordinal scale. Given Y , the symmetric input matrix X ∈ Rn×n

is made of the partial correlations between the n symptoms,
that is, X(i, j) = K(i,j)√

K(i,i)K(j,j)
where K = Σ−1 is the

precision matrix, defined as the inverse of the covariance
matrix of the columns of Y [20].

Considering the graph whose adjacency matrix is X and
where each node corresponds to a symptom, it is interesting
to identify its communities. This would allow us, for example,
to evaluate the set of symptoms that will be somehow im-
pacted by an action (such as a medication) on a particular
symptom [21]. Most works in this recent field only extract
one level of disjoint communities, which does not allow to
finely grasp all the possible interactions in the network.

In the following, we consider a dataset of 359 women suf-
fering from post-traumatical stress disorder (PTSD) evaluated
through the PTSD Symptom Scale-Self Report (PSS-SR) [22].
The PSS-SR is an ordinal scale assessing the 17 symptoms of
PTSD. It is built on the fourth version of the Diagnostic and
Statistical Manual of Mental Disosders (DSM) [23] (DSM-IV),
a standard classification of mental disorders used by mental
health professionals. Note that the fifth version is denoted
DSM-5; see below for some details. Items correspond to the
frequency of some behaviours considered as characteristic
of the pathology. This scale was expected to have three
communities representing symptoms of arousal (for example,
being jumpy), avoidance (for example, avoid reminders of the
trauma) and re-experiencing (for example, having bad dreams
about the trauma).

Fig. 2: Communities extracted at each layer by DSNMF on a
PTSD dataset. Communities extracted at the first and second
layer are circled in green and red, respectively.

The network of symptoms is built in R with the so-called
EBIC graphical Lasso regularization (see [21]) and represented
on Fig. 2.

We apply DSNMF on this network with the LM initializa-
tion. LM extracts 2 layers of respectively 4 and 3 communities
hence we perform DSNMF with L = 2, r1 = 4, r2 = 3. Fig. 2
displays the extracted communities at the first and second
layers which are circled in green and red, respectively. For
convenience, we only plot the main communities to which
each node belongs to. For a given node, we first assign it to the
community for which it has the largest degree of membership
(that is, largest value in the corresponding factor Wl). Then,
we sequentially assign it to more communities as follows:
we assign it to the next community with the largest degree
of membership if this degree is at least 60% of the latest
community assigned to this node. At the first layer, the 4
extracted communities are

• {1, 3, 4, 13, 14}, which represents symptoms of avoidance
and physical reaction caused by the lack of avoidance of
trauma reminders,

• {5, 6, 7, 8, 9, 10, 11, 12}, which is clinically the most
homogeneous community. These symptoms represent a
negative mood and correspond to the community added
in the new version of the scale (that is, DSM-5), and

• {2, 10, 12, 13, 15, 16} and {12, 13, 14, 17} gather re-
experiencing symptoms and attempts to avoid such re-
experiences.

Let us remark that node 10 and 14 belong to two communities
and nodes 12 and 13 belong to three communities.

At the second layer, the 3 extracted com-
munities are {1, 3, 4, 14}, {5, 6, 7, 8, 9, 10, 11} and
{2, 10, 12, 13, 14, 15, 16, 17}. Node 10 and 14 again belong



to two communities. Roughly speaking, the second layer
merges the two last communities of the first layer, keeping
the two others mostly unchanged.

The analysis of the different communities shows that the
algorithm did not extract the different sub-scales of the PSS-R,
but rather extracted communities representing behaviors that
are commonly presented together among patients. In other
words, DSNMF did not extract the different symptoms of
avoidance, re-experiencing and arousal distinctly, but rather
extracted behaviors that can be observed together. This could
have strong clinical implication for disorders presenting com-
plex interactions between multiple features, such as PTSD or
suicide behaviors.

Finally, it is to be noted that the communities extracted
by DSNMF represent well the critics raised by the DSM-IV
assessment of PTSD. The joint presentation of symptoms
representing a negative mood and cognition led the re-
search community to modify the assessment of PTSD in
the DSM-5 [24]. Indeed, it was shown that (i) certain items
represented a different category of symptoms that the one
originally conceptualized, and (ii) the formulation of certain
items led to inconsistencies [25]. The analysis of the node
shared by the most communities strengthens this interpretation.
That is, node 12 has been largely questioned, re-written in the
DSM-5 and finally added to the new community of symptoms
of negative mood and cognition.

V. CONCLUSION

In this paper, we introduced deep symmetric non-negative
matrix factorization (DSNMF), an extension of symmetric
NMF to several layers. We showed the efficiency of the
proposed model on both synthetic and real data for the
hierarchical extraction of interleaved communities in networks.
In particular, we extracted non-disjoint communities in a
network of psychiatric symptoms, that lead to meaningful
clinical interpretations. We plan to investigate more in details
the added value of such hierarchical communities extraction
in the psychological field in future works.

Interesting perspectives also include the experimentation of
other initialization strategies for real data, especially when the
number of layers of factorization is unknown. In this paper,
we used the well-known Louvain Method which extracts a
hierarchy of disjoint communities but has the drawback to
assign each node to a single community at each step. Testing
our model on other applications, such as the hierarchical ex-
traction of topics in a document corpus, is an other promising
perspective, but without ground-truth, the quantitative analysis
of the performance of DSNMF would be challenging, as
for the other unsupervised deep MF models. Hence, defining
proper metrics to assess the quality of such a hierarchical fuzzy
clustering also seems crucial to us.
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